JSON: JavaScript
Object Notation

Gaston Sanchez
Creative Commons Attribution Share-Alike 4.0 International (CC BY-SA)

About

In these slides we give you a crash introduction
to JSON data:

e JSON basics
e Toy examples

BART AP]

® ® ® T The BART API | bart.gov O

S @ bart.gov/schedules/developers/api ® @ Incognito

SART EEVENNCE —
m Rapid Transit O\ -

Since 2010, the BART API (http:/api.bart.gov/e-) has been a one-stop shop for BART:

* Schedules;

* Service advisories;

* Fares;

* Real time estimates;

* Station information and more!

Two ways to get a BART API key

* (1) No strings attached

We won't make you register for BART open data. Just follow our short and simple License Agreement, give
our customers good information and don't hog community resources:

MWOS-E7SL-26DU-VV8V

* (2) Strings with benefits

If you sign up for your very own keyE» you'll still be able to access the API if the public key is refreshed. Plus
you'll get change notices and other updates to keep your application running smoothly.

® ® ® T BART - API Documentation

C & api.bart.gov/doc i @ Incognito
BART §
m BART API Documentation
Overview BART API

Examples The BART API gives you access to pretty much all of the BART service and station data available on the
BART website. Check out an overview or read our simple License Agreement then jump right in with

Change Log your own API validation key.

Notices
Command Overview

Station

REBravEens The BART API contains several different functional areas:

Glossary

Overview Contains general information and help about the BART API.

Output Formats
Adyvisories Contains commands and calls pertaining to BART service advisories (BSA), elevator

Advisories outages and train counts.

RBalTine Eslirates Real-Time Contains commands and calls pertaining to estimated time of departure (ETD).
Estimates

Route Information Route Contains commands and calls pertaining to BART routes.

Schedule Information Information
Schedule Contains commands and calls pertaining to trip planning, route schedules, station

Station Information
: I Information schedules, holiday schedules, and special messages.

Version Information Station Contains commands and calls pertaining to BART stations
Information

® ® ® T BART - API Documentation, St X 4+

é

Overview

Advisories
Real-Time Estimates
Route Information
Schedule Information
Station Information
help
stnaccess
stninfo

stns

pA¢ @ Incognito

BART APl Documentation

Station Information API

Command Overview

The BART Station Information feed contains commands for requesting information about the BART

stations.

The following commands are available through the Station Information API calls:

=g

Ip Requests detailed information regarding a specific route.
stninfo Provides a detailed information about the specified station.

stnaccess Requests detailed information how to access the specified station as well as information
about the neighborhood around the station.

stns Provides a list of all available stations.

ver This command has been depricated and replaced by the API Version command.

® ® ® T BART - API Documentation, St X +

= (& @ api.bart.gov/docs/stn/stns.aspx px¢ @ Incognito

Station Information API

Overview
Advisories
Real-Time Estimates
Route Information
Schedule Information
Station Information
help
stnaccess
stninfo
stns

Version Information

Command: stns

Inputs

cmd=stns Requests current API version information (Required)

key=<key> API registration key (Required)

json=y Returns API output in JSON format. Default output is XML if parameter not
specified. (Optional)

Notes

This command provides a list of all of the BART stations with their full names, abbreviations, latitude,
longitude and addresses.

Results
XML Sample

<?xml version="1.0" encoding="utf-8" ?>
<root>
<uri><![CDATA[http://api.bart.gov/api/stn.aspx?cmd=stns]]></uri>
<stations>
<station>
<name>12th St. Oakland City Center</name>

<abbr>12TH</abbr>

XML Sample

<?xml version="1.0" encoding="utf-8" ?>
<root>
<uri><![CDATA[http://api.bart.gov/api/stn.aspx?cmd=stns]]></uri>
<stations>
<station>
<name>12th St. Oakland City Center</name>
<abbr>12TH</abbr>
<gtfs latitude>37.803664</gtfs latitude>
<gtfs longitude>-122.271604</gtfs longitude>
<address>1245 Broadway</address>
<city>Oakland</city>
<county>alameda</county>
<state>CA</state>
<zipcode>94612</zipcode>

</station>

JSON Sample

{
"@aml e
"@version":"1.0",
"@encoding":"utf-8"
}s
"root":{
*uri”s{
"#cdata-section":"http://api.bart.gov/api/stn.aspx?cmd=stns&json=y"
b
"stations":{
*station™:|
{
"name":"12th St. Oakland City Center",
“abbxr":"12TH";
"gtfs latitude”:"37.803768",
"gtfs_longitude":"-122.271450",
"address":"1245 Broadway",
"city":"0Oakland",
"county":"alameda",
"state":"CA",
"zipcode":"94612"

b,

http://api.bart.gov/api/stn.aspx?cmd=stns&key=your-key

protocol resource path
K—H r A N\
http:// api/stn.aspx?cmd=stns&key=your-key

query

Usage example:
http://api.bart.gov/api/stn.aspx?cmd=stns&key=MW9S-E7SL-26DU-VV8V

10

How to make request from R?

You can use R package httr. If you are not familiar with
the structure of the URI, you can use parse url ()

bart = "http://api.bart.gov/api/stn.aspx?cmd=stnsé&
key=MW9S-E7SL-26DU-VV8V"

parse url (bart)

11

Uncovering URI

parse url (bart)

Sscheme
[1] "http"

Shostname
[1] "api.bart.gov"

Sport "

NULL el

-~
- -
N e —m -

Spath
[1] "api/stn.aspx"

Squery
Squery$cmd
[1] "stns"

SqueryS$Skey
[1] "MW9S-E7SL-26DU-VV8V"

12

GET request: with httr's function GET()

req = GET (
url = "http://api.bart.gov/",
path = "api/stn.aspx",
query = list(
cmd = "stns'",

key = "MWI9S-E7SL-26DU-VV8V"

13

GET request: with httr's function GET()

returned output
req
Response
[http://api.bart.gov/api/stn.aspx?cmd=stns
skey=MW9S-E7SL-26DU-VV8V]
Date: 2020-06-30 01:34
Status: 200
Content-Type: text/xml; charset=utf-8
Size: 13.9 kB

14

Parsing XML
content with
xml2()

Extracting content()

extract XML content

doc = content (req)

doc

{xml document}

<root>

[1]

<uri><! [CDATA[http://api.bart.gov/api/stn.
aspx?cmd=stns]]></uri>

[2] <stations>\n <station>\n
<name>12th St. Oakland City Center<
[3] <message/>

16

stn name = doc %>%
xml find all("//name") %>%
xml text()

o°

stn lat = doc %>
xml find all("//gtfs latitude") %>%
xml text()

stn lon = doc %>%
xml find all("//gtfs longitude") %>%
xml text()

stn_address = doc $%>%
xml find all("//address") %>%
xml text ()

17

stn city = doc %>%
xml find all("//city") %>%
xml text()

stn county = doc %>%
xml find all("//county") %>%
xml text()

stn zip = doc %>%
xml find all("//zipcode") %>%
xml text()

18

dat = data.frame (

name = stn name,
latitude = stn lat,
longitude = stn lon,
address = stn address,

city = stn city,

county = stn county,
zipcode = stn zip,
stringsAsFactors = FALSE

19

Parsing json
content with
jsonlite

GET request: with httr's function GET()

json req = GET (
url = "http://api.bart.gov/",

path = "api/stn.aspx",
query = list(
cmd = "stns'",

key = "MWI9S-E7SL-26DU-VV8V"

json — "y"
) : D
accept json()

21

Extracting JSON content

data is contained as raw Unicode
class (json_ reqgScontent)

converting from character vector

containing JSON into a json structure

jdat = Jjsonlite: :fromJSON (
(rawToChar (json reqgScontent))

extract data frame of stations
dat stns = jdat$root$stations

Gaston Sanchez

22

