The Grammar of Graphics \& ggplot2

Stat 133 by Gaston Sanchez

Creative Commons Attribution Share-Alike 4.0 International CC BY-SA

So you want to make a plot?
The plotting steps vary by dataset and project But you should consider four things:

1. What data do you have?
2. What do you want to know about the data?
3. What visualization methods should you use?
4. What do you see and does it make sense?

Explore different dimension

What data do you have?

How many variables?

1. One variable
2. Two variables
3. Three or more

What type of variables?
4. Quantitative, qualitative, time

What do you want to know about your data?

- Part-to-whole analysis
- Ranking analysis
- Deviation analysis
- Times series (trends in time)
- Distribution analysis
- Correlation analysis
- Multivariate analysis

What do you do see?

- Systematic variation
- Increasing patterns
- Decreasing patterns
- Atypical or outliers
- Noise?

Visualization is simply mapping data to geometry and color

Visualization is simply mapping data to geometry and color

Title of this Graph

A description of the data or something worth highlighting to set the stage

Visual Cues

Encoding data with shapes, colors, and sizes. Which cues you choose depends on your data and your goals

Coordinate System

Mapping data requires a system of coordinates: cartesian, polar, etc

Scale

Increments that make sense can increase readability as well as shift focus

120
100
80
60
40
20
0
Jan Feb Mar Apr May

Title of this Graph

A description of the data or something worth highlighting to set the stage
Context
If your audience is unfamiliar with the data, it's your job to clarify what values represent and explain how people should read your plot

Title of this Graph

A description of the data or something worth highlighting to set the stage

Chart Elements

Manufacturers are posting jobs, not filling them

Change since June 2009, seasonally adjusted

Manufacturers are posting jobs, not filling them

Change since June 2009, seasonally adjusted title

Manufacturers are posting jobs, not filling them

 Change since June 2009, seasonally adjusted

Manufacturers are posting jobs, not filling them

 Change since June 2009, seasonally adjusted

Manufacturers are posting jobs, not filling them

 Change since June 2009, seasonally adjusted

Manufacturers are posting jobs, not filling them

Change since June 2009, seasonally adjusted
Grid lines

Another example

New Yorkers pay up for a shorter commute
Median monthly NYC rent in 2015 vs. commute time by subway

[^0]New Yorkers pay up for a shorter commute
Median monthly NYC rent in 2015 vs. commute time by subway

[^1]New Yorkers pay up for a shorter commute
Median monthly NYC rent in 2015 vs. commute time by subway

Rental prices are based on FiveThirtyEight's analysis of 2015 listings on StreetEasy. Commutes are calculated as the average time from the subway station nearest a home to the nearest 42 nd Street and Chambers Street stations. Commutes without at least 10 listings are excluded.

New Yorkers pay up for a shorter commute

Median monthly NYC rent in 2015 vs. commute time by subway

[^2]New Yorkers pay up for a shorter commute
Median monthly NYC rent in 2015 vs. commute time by subway

[^3]
Grammar of Graphics with "ggplot2"

The Grammar of Graphics

About the grammar of graphics

The Grammar of Graphics is Wilkinson's attempt to define a theoretical framework for graphics

Grammar: formal system of rules for generating graphics:

- Some rules are mathematic
- Some rules are aesthetic (i.e. visual)

Aesthetics \neq Beauty

Aesthetics (GG): attributes of the geometric objects

Meaning of aesthetic in the Grammar of Graphics

Aesthetics: pertaining to sense perception
Aisthesthai $=$ perceive
GG aesthetic attributes: visual properties that affect the way observations are displayed

About the grammar of graphics

Three stages of graphic creation
Specification: link data to graphic objects
Assembly: put everything together
Display: render of a graphic

R package

 ggplot2
Resources

Documentation: http://docs.ggplot2.org
Book: ggplot2: Elegant Graphics for Data Analysis by Hadley Wickham

Book: R Graphics Cookbook by Winston Chang
RStudio ggplot2 cheat sheet
https://www.rstudio.com/wp-content/uploads/2015/03/ggplot2-cheatsheet.pdf

ggplot2 book

Hadley Wickham

ggplot2

Elegant Graphics for Data Analysis

Springer

ggplot2 book

R package "ggplot2"

Remember to install ggplot2 (just once)
install.packages("ggplot2")
library (ggplot2)
?ggplot

About ggplot2

"ggplot2" is an R package for producing statistical graphics.

It provides a framework based on Leland Wilkinson's Grammar of Graphics.
"ggplot2" provides beautiful plots while taking care of fiddly details like legends, axes, colors.

About ggplot2

Default appearance of plots carefully chosen
Designed with visual perception in mind
Inclusion of some components, like legends, are automated

Great flexibility for annotating, editing, and embedding output

base graphics

ggplot2

About ggplot2

"ggplot2" is the name of the package (don't forget the 2)

The $g g$ in ggplot2 stands for Grammar of Graphics

Inspired in the Grammar of Graphics by Lee Wilkinson
ggplot () is the main function in "ggplot2"

ggplot2 philosophy: Describe a wide range of graphics with a compact syntax and independent components

What is a Statistical Graphic?

Data set mtcars

	mpg	hp	cyl
Mazda RX4	21.0	110	6
Mazda RX4 Wag	21.0	110	6
Datsun 710	22.8	93	4
Hornet 4 Drive	21.4	110	6
Hornet Sportabout	18.7	175	8
Valiant	18.1	105	6
Duster 360	14.3	245	8
Merc 240D	24.4	62	4
Merc 230	22.8	95	4
Merc 280	19.2	123	6

Miles per gallon -vs- Horsepower

Elements to draw the chart "manually"

Coordinate system
x and y axes
Axis tick marks
Axis labels, and title
Points (of a given size and color)
Regression line (and ribbon)
Legend

A statistical graphic is ...

A mapping from data to aesthetic attributes (color, shape, size) of geometric objects (points, lines, bars)

A plot may also contain statistical transformations of the data

A plot is drawn on a specific coordinate system Sometime faceting can be used to get the same plot for different subsets of the dataset

Example

name	gender	height	weight	jedi	species	weapon
Luke Skywalker	male	1.72	77	jedi	human	lightsaber
Leia Skywalker	female	1.5	49	no_jedi	human	blaster
Obi-Wan Kenobi	male	1.82	77	jedi	human	lightsaber
Han Solo	male	1.8	80	no_jedi	human	blaster
R2-D2	male	0.96	32	no_jedi	droid	unarmed
C-3PO	male	1.67	75	no_jedi	droid	unarmed
Yoda	male	0.66	17	jedi	yoda	lightsaber
Chewbacca	male	2.28	112	no_jedi	wookiee	bowcaster

How does it work?

1 Dataset

2 Which variables

3 Which Geometric objects
4 Which Aesthetic attributes

\square	points
abcd \sim	$\mathbf{x}=\mathrm{A}$
lext	$\mathbf{y}=\mathrm{C}$
lines	color $=\mathrm{E}$
bars	size $=$ default
	shape $=$ default

Building a scatterplot

Dataset: starwars
Variables: height, weight, jedi
Geoms: points
Aesthetic (perceptive attributes):

- X-axis: height
- Y-axis: weight
- Color: jedi

Scatterplot with ggplot2

```
ggplot(data = starwars) +
    geom_point(aes(x = height, y = weight, color = jedi)
```

ggplot() initializes a "ggplot" object
You specify the data set (data frame) with data
geom_point () indicates the type of geometric object
You use aes () to map aesthetic attributes to variables:
X-position: height
Y-position: weight
Color: jedi

Automated things in ggplot2

- Axis labels
- Legends (positions, labels, symbols)
- Choice of colors for points
- Background color (i.e. gray)
- Grid lines (major and minor)
- Axis tick marks

You can always override the default settings (this is the tricky part in ggplot2)

Mapping

data values

height	weight	jedi
1.72	77	jedi
1.50	49	no_jedi
1.82	77	jedi
1.80	80	no_jedi
0.96	32	nojedi
1.67	75	nojedi
0.66	17	jedi
2.28	112	no_jedi

These values are meaningful to us, but not to the computer
aesthetic attributes

x	y	color
x_{1}	y_{1}	\#F8766D
x_{2}	y_{2}	\#00BFC4
x_{3}	y_{3}	\#F8766D
x_{4}	y_{4}	\#00BFC4
x_{5}	y_{5}	\#00BFC4
x_{6}	y_{6}	\#00BFC4
x_{7}	y_{7}	\#F8766D
x_{8}	y_{8}	\#00BFC4

They need to be converted from data units to physical units that the computer can display

Main elements

A graphic is a mapping from data to aesthetic attributes (color, shape, size) of geometric objects (points, lines, bars, etc)
ggplot(data, ...)
aes()
geom_objects()

How does ggplot2 work?

Plots are created piece-by-piece
Plot components added with + operator
Aesthetic attributes mapped to data values
Computation of scales for aesthetic attributes

The data MUST BE in a data frame!

Always ask

What is the data set of interest?
What variables (columns) will be used to make the plot?

What graphic shapes (geoms) will be used to display the data?

What features of the shapes will be used to represent the data values?

Warning

ggplot2 comes with the function qplot () (i.e. quick plot)

Avoid using it!
As Karthik Ram says: "you'll end up unlearning and relearning a good bit"

[^0]: Rental prices are based on FiveThirtyEight's analysis of 2015 listings on StreetEasy. Commutes are calculated as the average time from the subway station nearest a home to the nearest 42nd Street and Chambers Street stations. Commutes without at least 10 listings are excluded.

[^1]: Rental prices are based on FiveThirtyEight's analysis of 2015 listings on StreetEasy. Commutes are calculated as the average time from the subway station nearest a home to the nearest 42nd Street and Chambers Street stations. Commutes without at least 10 listings are excluded.

[^2]: Rental prices are based on FiveThirtyEight's analysis of 2015 listings on StreetEasy. Commutes are calculated as the average time from the subway station nearest a home to the nearest 42 nd Street and Chambers Street stations. Commutes without at least 10 listings are excluded.

[^3]: Rental prices are based on FiveThirtyEight's analysis of 2015 listings on StreetEasy. Commutes are calculated as the average time from the subway station nearest a home to the nearest 42nd Street and Chambers Street stations. Commutes without at least 10 listings are excluded.

