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Atomicity
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Vectors are 
atomic structures
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Examples

x <- c(1, 2, 3, 4, 5)

y <- c("one", "two", "three")

z <- c(TRUE, FALSE, TRUE)
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Atomic vectors

Vectors are atomic structures

The values in a vector must be ALL of the same 
type!

Either all integers, or reals, or complex, or 
characters, or logicals

You CANNOT have a vector of different data 
types
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Coercion

6



Gaston Sanchez

What happens if you mix 
different data values in a 
vector?
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Mixing data types within a vector?

x <- c(1, 2, 3, "four", "five")

y <- c(TRUE, FALSE, 3, 4)

z <- c(TRUE, 1L, 2 + 3i, pi)
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Implicit Coercion

If you mix different data values, R will implicitly 
coerce them so they are ALL of the same type

x <- c(1, 2, 3, "four", "five")

y <- c(TRUE, FALSE, 3, 4)

9



Gaston Sanchez

How does R coerce data types in vectors?

R follows two basic rules of implicit coercion

1) If a character is present, R will coerce 
everything else to characters

2) If a vector contains logicals and numbers, R 
will convert the logicals to numbers (TRUE to 1, 
FALSE to 0)
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Hierarchy of data types

Logical < Integer < Double < Character
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Coercion functions

R provides a set of explicit coercion functions 
that allow you to “convert” one type of data into 
another

● as.character()
● as.numeric()
● as.double()
● as.integer()
● as.logical()
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Vectorization
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Vectorization

A vectorized computation is any computation 
that when applied to a vector operates on all of 
its elements

c(1, 2, 3) + c(3, 2, 1)

c(1, 2, 3) * c(3, 2, 1)

c(1, 2, 3) ^ c(3, 2, 1)
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Vectorized code
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1 2 3

1 2 3

2 4 6
3 6 9

2 4 6



Recycling
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Recycling

When vectorized computations are applied, some 
conflicts may occur when dealing with two 
vectors of different length

c(2, 1) + c(1, 2, 3)

c(1, 2, 3, 4) + c(1, 2)
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Recycling Rule

The recycling rule can be very useful, like when 
operating between a vector and a “scalar”

x <- c(2, 4, 6, 8)

x + 3
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Recycling (and vectorization)
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1 2 3 4

3 3 3 3
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Recycling (and vectorization)
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1 2 3 4

1 2 3 4

2 4 2 4
3 6 5 8
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Recycling (and vectorization)
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1 2 3

2 4 2
3 6 5

2 4



Subsetting and 
Indexing
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Bracket notation for vectors
vec[index]
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Bracket Notation System

To extract values from R objects use brackets: [ ]

Inside the brackets specify vector(s) of indices

Use as many indices, separated by commas, as 
dimensions in the object

Vector(s) of indices can be numbers, logicals, 
and sometimes characters
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Bracket Notation System

# some vector
x <- c(2, 4, 6, 8)

# adding names
names(x) <- letters[1:4]
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Numeric index

# first element
x[1]

# second element
x[2]

# last element
x[length(x)]
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Numeric index

# first 3 elements
x[1:3]

# non-consecutive elements
x[c(1, 3)]

# different order
x[c(3, 2, 4, 1)]
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Logical index

# first element
x[c(TRUE, FALSE, FALSE, FALSE)]

# elements equal to 2
x[x == 2]

# elements different to 2
x[x != 2]
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Character index

# element names "a"
x["a"]

# "b" and "d"
x[c("b", "d")]

# what about this?
x[rep("a", 5)]
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Logical index

# elements greater than 1
x[x > 1]

# try this
x[TRUE]

# what about this?
x[as.logical(c(0, 1, pi, -10))]
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