
Vectors in R (part 2)
Stat 133 with Gaston Sanchez
Creative Commons Attribution Share-Alike 4.0 International CC BY-SA

Atomicity

2

Gaston Sanchez

Vectors are
atomic structures

3

Gaston Sanchez

Examples

x <- c(1, 2, 3, 4, 5)

y <- c("one", "two", "three")

z <- c(TRUE, FALSE, TRUE)

4

Gaston Sanchez

Atomic vectors

Vectors are atomic structures

The values in a vector must be ALL of the same
type!

Either all integers, or reals, or complex, or
characters, or logicals

You CANNOT have a vector of different data
types

5

Coercion

6

Gaston Sanchez

What happens if you mix
different data values in a
vector?

7

Gaston Sanchez

Mixing data types within a vector?

x <- c(1, 2, 3, "four", "five")

y <- c(TRUE, FALSE, 3, 4)

z <- c(TRUE, 1L, 2 + 3i, pi)

8

Gaston Sanchez

Implicit Coercion

If you mix different data values, R will implicitly
coerce them so they are ALL of the same type

x <- c(1, 2, 3, "four", "five")

y <- c(TRUE, FALSE, 3, 4)

9

Gaston Sanchez

How does R coerce data types in vectors?

R follows two basic rules of implicit coercion

1) If a character is present, R will coerce
everything else to characters

2) If a vector contains logicals and numbers, R
will convert the logicals to numbers (TRUE to 1,
FALSE to 0)

10

Gaston Sanchez

Hierarchy of data types

Logical < Integer < Double < Character

11

Gaston Sanchez

Coercion functions

R provides a set of explicit coercion functions
that allow you to “convert” one type of data into
another

● as.character()
● as.numeric()
● as.double()
● as.integer()
● as.logical()

12

Vectorization

13

Gaston Sanchez

Vectorization

A vectorized computation is any computation
that when applied to a vector operates on all of
its elements

c(1, 2, 3) + c(3, 2, 1)

c(1, 2, 3) * c(3, 2, 1)

c(1, 2, 3) ^ c(3, 2, 1)

14

Gaston Sanchez

Vectorized code

15

1 2 3

1 2 3

2 4 6
3 6 9

2 4 6

Recycling

16

Gaston Sanchez

Recycling

When vectorized computations are applied, some
conflicts may occur when dealing with two
vectors of different length

c(2, 1) + c(1, 2, 3)

c(1, 2, 3, 4) + c(1, 2)

17

Gaston Sanchez

Recycling Rule

The recycling rule can be very useful, like when
operating between a vector and a “scalar”

x <- c(2, 4, 6, 8)

x + 3

18

Gaston Sanchez

Recycling (and vectorization)

19

1 2 3 4 3

1 2 3 4

3 3 3 3
4 5 6 7

Gaston Sanchez

Recycling (and vectorization)

20

1 2 3 4

1 2 3 4

2 4 2 4
3 6 5 8

2 4

Gaston Sanchez

Recycling (and vectorization)

21

1 2 3

1 2 3

2 4 2
3 6 5

2 4

Subsetting and
Indexing

22

Gaston Sanchez

Bracket notation for vectors
vec[index]

23

Gaston Sanchez

Bracket Notation System

To extract values from R objects use brackets: []

Inside the brackets specify vector(s) of indices

Use as many indices, separated by commas, as
dimensions in the object

Vector(s) of indices can be numbers, logicals,
and sometimes characters

24

Gaston Sanchez

Bracket Notation System

some vector
x <- c(2, 4, 6, 8)

adding names
names(x) <- letters[1:4]

25

Gaston Sanchez

Numeric index

first element
x[1]

second element
x[2]

last element
x[length(x)]

26

Gaston Sanchez

Numeric index

first 3 elements
x[1:3]

non-consecutive elements
x[c(1, 3)]

different order
x[c(3, 2, 4, 1)]

27

Gaston Sanchez

Logical index

first element
x[c(TRUE, FALSE, FALSE, FALSE)]

elements equal to 2
x[x == 2]

elements different to 2
x[x != 2]

28

Gaston Sanchez

Character index

element names "a"
x["a"]

"b" and "d"
x[c("b", "d")]

what about this?
x[rep("a", 5)]

29

Gaston Sanchez

Logical index

elements greater than 1
x[x > 1]

try this
x[TRUE]

what about this?
x[as.logical(c(0, 1, pi, -10))]

30

