Vectors in R (part 1)

Stat 133 with Gaston Sanchez

Creative Commons Attribution Share-Alike 4.0 International CC BY-SA

DCD Data Computing Diagram

Software & Languages

Code, Scripts, Programs

Computers

Analyst /Scientist

We'll be working with "Data"

How do statisticians / analysts think of data?

How do computers treat data?

How do data sets get stored?

How do programs "understand" data?

Be the boss of your data

How do programming languages handle data?

Data for Software & Languages?

Basic kinds

Data Structures

Containers

Data Types (for programming languages)

Also refer to as *data primitives* or primitive types

They serve as the building blocks (i.e. they are like the atoms)

Common Data Types (for programming languages)

- Integers (i.e. whole numbers)
- Real numbers (i.e. decimal numbers)
- Boolean (i.e. logical)
- Character (i.e. strings)

Common Data Types (for programming languages)

In many programming languages, everytime you create an object or a variable, you must declare its type:

char first_name
int age

(you don't have to do this in R)

Data Types in R

Data types in R

- Logical (boolean)
- **Integer** (whole numbers)
- **Double** (real, decimal numbers)
- Character (or strings)
- *Complex (rarely used)
- *Raw (rarely used)

Data Types (primitives)

- TRUE # logical
- 1L # integer
- 2.5 # double (real)
- "hello" # character
- 1 + 3i # complex

Vectors in R

To a large extent, R is a vector-based language

A vector is the most basic data structure in R

Vectors are contiguous cells containing data

2 4	6	8	10
-----	---	---	----

2

Can be of any length (including zero)

Different kinds of vectors

1	2	3	4	5	numeric
---	---	---	---	---	---------

TRUE	FALSE	TRUE	FALSE	logical
------	-------	------	-------	---------

" "	"you"	"we"	"they"	character
-----	-------	------	--------	-----------

Common (and not so common*) data types in R

A logical vector stores TRUE and FALSE values

An integer vector stores integers

A double vector stores regular (real) numbers

A character vector stores character strings

*A **complex** vector stores complex numbers

*A raw vector stores raw bytes

"Scalars" = one element vectors

- z <- TRUE # logical
- x <- 1L # integer
- y <- 2.5 # real
- w <- "hello" # character
- u < -1 + 3i # complex

R parlance: Types and Modes

The function typeof () returns the type of data: this is how the values are stored internally in R.

In **S** terminology, instead of talking about **types** we talk about **modes**.

The function mode () returns the "mode" of an R object.

Data types and modes

— A bit confusing at the beginning

value	example	mode	type
integer	1L, 2L	numeric	integer
real	1, -0.5	numeric	double
complex	3 + 5i	complex	complex
logical	TRUE, FALSE	logical	logical
character	"hello"	character	character

useRs typically talk about the **mode**

Special Values

There are some special data values in R

- **NULL** = null object
- **NA** = Not Available (missing value)
- **Inf** = positive infinite
- -Inf = negative infinite
- **NaN** = Not a Number (different from NA)

Creating Vectors

Creating vectors

R provides a very large number of functions for creating all kinds of vectors.

Creating vectors with the combine function c()

$$x < - c(1, 2, 3, 4, 5)$$

z <- c(TRUE, FALSE, TRUE)</pre>

Sequences

A common task involves creating sequences. The primary function is **seq()** but there's also **seq_along()**, **seq_len()** and **seq.int()**

Numeric Sequences with colon operator :

- 1:5
- 1.5:5.5
- 5:1
- -5:5

Numeric Sequences

seq(from = 1, to = 10)

seq(from = 1, to = 10, by = 2)

seq(from = 10, to = 1, by = -2)

Numeric Sequences

seq(from=1, to=100, length.out=10)

seq_along(c(2,4,6,8)

seq.int(from = 2, to = 10, by = 2)