Stat 133: Concepts in Computing with Data

Stat 133 with Gaston Sanchez Creative Commons Attribution Share-Alike 4.0 International CC BY-SA

Intro survey (google form)

About Stat 133

Stat 133 Core Course for Statistics Major

Roles for Stat 133

My Philosophy

DATA: BY THE NUMBERS

http://www.phdcomics.com/comics/archive.php?comicid=462

Data Preparation

- Acquisition
- Storage
- Cleaning
- Processing
- Tidying
- Reshaping
- Wrangling

Analysis

- Exploration
- Description
- Visualization
- Hypothesis Tests
- Inference
- Simulation
- Model Fitting

Reports

- Document(s)
- Article(s)
- Book(s)
- Poster(s)
- Blog post(s)
- Dissertation
- News

Communication

- Oral
- Print
- Web
- Audio
- Video
- Multimedia
- Other

Traditionally ...

Traditionally, this is where most teaching focuses on

However ...

(ALMOST) NO ONE TEACHES THIS!

In practice these are where we spend most of our time

Course Content

Course cornerstones

Data Tables

- 1. Data Tables
- 2. Selecting and Filtering
- 3. Reshaping
- 4. Aggregation & Group by operations
- 5. Joins and Merges

Taking Care of Data

- 1. Storing Tables (files & formats)
- 2. Data Dictionary (metadata)
- 3. Data Organization
- 4. Cleaning
- 5. Data Tidying

Data Visualization

- 1. Visualization basics
- 2. Colors
- 3. Design and Aesthetics considerations
- 4. Efficient displays
- 5. Good and bad practices

Programming Concepts

- 1. Emphasis on data analysis
- 2. Data types and data structures
- 3. Control flow structures
- 4. Functions
- 5. Regular Expressions

Reporting Tools

- 1. Markdown syntax
- 2. LaTeX (mostly equations)
- 3. Dynamic Documents
- 4. Shiny Apps
- 5. Writing reports

R and other tools

- 1. R
- 2. RStudio
- 3. Command Line (Bash)
- 4. Unix filters & utilities

Instruction

In-person instruction

Lecture: more conceptual/theory

Lab: practice

Website & bCourses

Units: weekly topics

- Slides, readings, cheatsheets, files
- Lab materials
- Assignments
- Submissions

Grading Structure

8% Lab work (weekly; drop 2 lowest)

35% HW (6 assignments; drop lowest)

27% Apps (3 shiny apps; no drops)

8% Midterm

22% Final exam

Enrollment

Waitlist

Concurrent-enrollment

Some Comments

Remarks

- Very hands-on course
- Expect to do A LOT OF WORK outside class
- Deceptively simple
- Very easy to fall behind

Lecture: conceptual stuff, demos, case studies, examples, review some code

Lab: practical work using R, command line, git

Homework: follow the work of labs, plus some challenges

My Expectations

Don't expect that you'll become a data scientist (that takes years of hard work)

Instead: give you solid foundations about data analysis

Expose you to different "data technologies"

Ultimate Goals

Understand different types of data (e.g. files, forms, formats)

Know how to access information stored in different formats

Know how to do data manipulation and processing in R

Be better prepared to crunch data

Becoming a data scientist is a (yearslong) marathon ... not a (one semester) sprint

Intro survey (google form)

