
PS: 13 Name:

Classification
Start by piecing together the code cells from the slides that use tidymodels to predict the species (Gentoo
or Adelie) of penguins using the value of body_mass_g. Put them into an .r script or Quarto document.

The following exercises have you investigate the different components of the code and make variations.

1. To build an understanding of the four metrics used to evaluate model performance, write four
dplyr (filter(), summarize(), mutate(), etc.) pipelines to calculate each metric manually from
ad_gen_preds. Alongside each of the pipelines, write the English interpretation of each (e.g.  “the
proportion of ___ penguins that the model predicted to be ____”). Check your results against the values
in all_metrics.

2. Using the model that performed the worst, build a plot to understand where it made the errors. This
should be a scatterplot with the predictor along the x-axis, the species along the y-axis, and points
colored by whether it is a true positive, true negative, false positive, or false negative.

3. Add two additional predictors to the recipe: island and bill_length_mm. Also add a third step:
step_dummy(all_nominal_predictors()). What are the different values that island can take?

4. Repeat the prep and bake phases as in the last problem set to get a glimpse of what the training data
would look like when all of the steps are applied. What happened to the island column?

STAT 133



5. Rerun your original three models with this modified recipe. How does the predictive performance of
each model on the test set compare?

6. Install the kernlab package and read the help file for data(spam). What is the natural response variable
in this dataset? What do each of the predictors represent?

7. Using the spam dataset, create a classification model to predict whether an email is spam or not spam.
You may use whichever predictors you like and any model class (with any parameters). Use a 70/30
train/test split and evaluate the model using the same four metrics as in the penguin example. What is
the highest you were able to get your test accuracy?

STAT 133



APIs I
Revisit the homepage for the BART Legacy API discussed in Lecture.

https://www.bart.gov/schedules/developers/api

8. What is the public key that can be used to access data through the legacy API?

Next visit the documention site: https://api.bart.gov/docs/overview/index.aspx. Note that each category
of data has its own endpoint / base URL, and all takes a similar format (e.g. for estimated departure data
use https://api.bart.gov/api/etd.aspx.)

9. Provide the URL that will query the API for a list of all BART stations in JSON format.

10. Provide the corresponding shell/terminal command.

11. Provide the corresponding R code that will perform the query and parse the JSON response into an
R list object.

12. Subset the list to to return a data frame that contains the station abbreviation, name, latitude,
longitude, address, city, county, state, and zipcode for each station. Which county has the greatest
number of stations?

13. Provide the URL that will query the API for estimated departure times (ETDs) from the Downtown
Berkeley Station in JSON format.

STAT 133

https://www.bart.gov/schedules/developers/api
https://api.bart.gov/docs/overview/index.aspx
https://api.bart.gov/api/etd.aspx


14. Provide the corresponding R code that will perform the query and parse the JSON response into an
R list object.

15. Extract the elemented called root and then the station element within it. View the object using the
data viewer. What type of object is it an what are it’s dimensions?

16. Use the unnest() function from the tidyr package to expand the etd list-column. What are the
dimensions of the resulting data frame?

17. Use unnest() again to expand the estimate list-column. What are the dimensions of the resulting
data frame?

18. How long (in minutes) is the shortest estimated wait time for a train departing from Downtown
Berkeley Station? Which destination does this train go to? For reference, what time is it now?

STAT 133



19. Query the BSA (BART System Advisories) endpoint to retrieve the latest system advisory information.
You’re welcome to use any method: web browser, command line, or R. What are the different bits of
information that they provide through this endpoint?

20. Optional Challenge: Use the data provided by the BART API to construct a map of the BART system
showing the locations of all stations. You could make it interactive with leaflet or static like the one
below.

STAT 133



APIs II
Begin by copying the source for two endpoints into an R script called stat133-api.R: /babynames and /
grades. Start your API server in your R session, then test it out by making requests using a web browser
and navigating to http://localhost:8080/babynames and http://localhost:8080/grades.

21. Keeping track of the version of your API is very important. Other software systems may be built
around your API, and your users need to access to a stable version. Consult to Plumber references
(https://www.rplumber.io/articles/annotations.html) to learn: what is the tag that can be used to add
a version to your API? Write it below then add it to your API.

22. Modify babynames to accept two more parameters: sex, that will return the babynames of the specified
sex and year, that will return the babynames for the specified year. All three parameters should be
optional. If no value is specified for a given parameter, the endpoint should return all babynames. For
example:

• http://localhost:8080/babynames?sex=F should return all female babynames.
• http://localhost:8080/babynames?year=2000 should return all babynames from the year 2000.
• http://localhost:8080/babynames?sex=M&year=1990 should return all male babynames from the

year 1990.

Provide your modified endpoint code below then test your endpoint using a web browser.

23. Create an additional endpoint called /requestcontents that is a POST request that does nothing but
returns the contents of the requests as a JSON object. Write the code for this endpoint below.

STAT 133

https://www.rplumber.io/articles/annotations.html


24. Test your new endpoint using the httr2 package by sending a POST request with a JSON body that
contains the following data:1

list([dish = "Turkey", quantity = 1, vegetarian = FALSE])

Provide the R code you used to send the request and the response you received below (formatted as an
R list).

25. Modify the /grades endpoint to reflect two important components of our grading scheme that was
omitted in the original implementation:
• Each quiz number score is an average of an individual grade and a group grade.
• Each quiz number score is evenly weighted when determining the quiz average.
• The lowest quiz number score will be dropped before calculating the quiz average.

Write the code of the modified endpoint below. Also write out an R list containing a fictional students’
full assignment grades, that will serve as the JSON payload when testing the endpoint.

1This is a good way to get a sense of what information is available in the request object when you write your endpoints.

STAT 133


	Classification
	APIs I
	APIs II

