
Stat 133, University of California, Berkeley Ajay Sharma

Functions: Basics and Lambda Expressions
Stat 133, Fall 2024

Lectures 7 & 8, 10/09/2024

1. Introduction to Functions

Functions are a way of modularizing our code, thus making it easier to reuse as needed
(instead of the alternative: copy-pasting the same block of code multiple times). A function
has 3 building blocks: (1) input e.g., arguments or parameters, (2) computation or processing,
and (3) an output. The general syntax of a function in R is:

function name = function(arg1, arg2) { # code goes here }
This concise format is often preferred when functions are simple or short, and the body of
the function can fit easily on a single line.

1.1. Example

Let’s create a simple function that adds two numbers:

add numbers = function(x, y) { return(x + y) }
To use this function:

add numbers(3, 5) # returns 8

2. Arguments and Defaults

Functions in R can have default values for arguments. This allows a function to be called
with fewer arguments than it is defined with, using the default values for missing parameters.

2.1. Example with Defaults

Consider the following function:

greet = function(name = "World") { return(paste("Hello,", name)) }

Calling the function with or without an argument:

• greet() returns "Hello, World"

• greet("Bob") returns "Hello, Alice"

1

Stat 133, University of California, Berkeley Ajay Sharma

2.1. Continued

Default arguments provide flexibility but can sometimes lead to confusion if not handled
carefully, especially when the order of arguments matters.

3. Returning Values from Functions

In R, a function returns the value of the last expression evaluated. However, to be con-
sistent with other programming languages, it’s good practice to use the return() function
(explicitly) to indicate what the output of the function should be.

3.1. Example

Here is a function that returns the square of a number:

square = function(x) { return(x**2) }

3.2. Implicit Return

Alternatively, without using return():

square = function(x) { x**2 }

Both versions of the function behave identically. However, using return() can make the
function’s intent clearer.

4. Anonymous Functions and Lambda Expressions

Lambda expressions (aka anonymous functions), are functions that are defined without a
name. They are typically used for short-term operations where defining a fully-named func-
tion would be cumbersome or unnecessary. Lambda expressions allow us to pass quick, inline
logic into functions without the need for a formal function definition.
The general syntax of a lambda expression in R is:

function(arg1, arg2, ...) { # code or expression goes here }

Lambda expressions are especially useful when working with functions like apply(), lapply(),
sapply(), and other higher-order functions that take other functions as arguments.

2

Stat 133, University of California, Berkeley Ajay Sharma

4.1. Example: Using Lambda Expressions in lapply()

Consider the following list of numbers:

lst = list(1, 2, 3, 4, 5)

We want to compute the square of each number. Instead of defining a named function for
this, we can directly use a lambda expression inside lapply():

lapply(lst, function(x) { x**2 })

This results in a list where each element is the square of the corresponding element from the
original list:

{1, 4, 9, 16, 25}

4.2. More Complex Example: Filtering with Lambda Expressions

Lambda expressions are also useful for filtering data. Suppose we want to filter out numbers
less than 3 from a vector. We can do this easily with the Filter() function:

Filter(function(x) { x >= 3 }, c(1, 2, 3, 4, 5)) # returns {3, 4, 5}

Here, the anonymous function function(x) { x >= 3 } is passed directly into Filter(),
specifying that only elements greater than or equal to 3 should be kept.

4.3. Lambda Expressions and Closures

Closures, or functions that capture the environment in which they were created, can also
be constructed using lambda expressions. Here’s a more complex example that shows how
lambda expressions can work with closures:

make adder = function(n) { return(function(x) { x + n }) }

The make adder function returns a lambda expression that adds n to any input x. For
instance:

add three = make adder(3)

add three(5) # returns 8

In this case, add three is a function that adds 3 to its input, and it remembers the value of
n that was passed to make adder(). This behavior is made possible by lexical scoping in R.

3

Stat 133, University of California, Berkeley Ajay Sharma

4.4. Function Composition

Lambda expressions can also be used in function composition, where the output of one
function is used as the input of another. For example:

composer = function(f, g) { return(function(x) {f(g(x))}) }

double = function(x) { x*2 }
square = function(x) { x**2 }

double then square = composer(square, double)

double then square(3) # returns 36

Here, the lambda expression function(x) { f(g(x)) } allows us to compose two functions,
square and double, into one that first doubles a number and then squares the result.

5. Scope and Environments

R uses lexical scoping to determine where a variable’s value is looked up. The value of
a variable is determined by the environment in which the function was defined, not the
environment in which it was called.

5.1. Example: Lexical Scoping

Consider the following code:

x = 10

f = function() { x = 5; return(x) }
f() # returns 5

x # returns 10

Here, the value of x inside the function is 5, but the value of x outside the function remains 10.
This is because the function f() has its own environment where the variable x is redefined.

6. Summary

Functions allow us to modularize certain parts of code that repeats and define customs
functions that, well, do certain tasks (which may not be pre-defined in R) Lambda expressions
(I like to use them whenever possible) provide a powerful and flexible way to work with
functions in R and are useful when a quick, temporary function is needed, thus allow us to
write even more concise and clean code. Scope and environments is also a critical concept
to understand, and can be helpful when writing code (and especially debugging).

4

