
Stat 133, University of California, Berkeley Ajay Sharma

Concepts in Computing with Data
Stat 133, Fall 2024

Lecture 3, 09/04/2024

1. Review

i. Logical Vector
a = c(TRUE, FALSE, NA)

ii. Integer Vector
b = c(2L, 4L, 6L)

iii. Double Vector
c = c(1, 2, 3)

d = c(1.1, 2.2, 3.3)

iv. Character Vector
e = c("a", "b", "c", "d")

2. Naming Vectors

2.1. Conceptual

In R, vectors can have names associated with each element. Naming vectors allows
each element to be referenced by its corresponding name instead of its index, which
can make the code more readable and easier to manage. The names can be assigned
using the names() function.

Assigning Names to Vectors: The names() function allows us to associate names
with vector elements. Here’s how it works:

• If the number of names matches the length of the vector, each element is given a
name.

• If there are more names than elements in the vector, R will throw an error, as it
cannot assign names to non-existent elements.

• If there are fewer names than elements in the vector, R will assign the names to the
corresponding elements and assign NA to the unnamed elements.

1



Stat 133, University of California, Berkeley Ajay Sharma

2.2. Example 1

Consider the following vectors:
x = c(2, 4, 6)

y = c(2, 4, 6)

abc = c("a", "b", "c")

abcd = c("a", "b", "c", "d")

Assigning names:

names(x) = abc # assigns elements in vector abc to vector x

names(y) = abcd

2.3. Example 2

Consider the following:

z = c(2, 4, 6, 8)

names(z) = abc

Result:

a b c <NA>

2 4 6 8

Question

Explain why names(y) = abcd results in an error message but names(z) = abc does
not.

Hint: Refer to section 2.1

2



Stat 133, University of California, Berkeley Ajay Sharma

3. Other Functions

3.1. Repeating Elements

Using the same vector x as in section 2:

rep(x, times = 2)

Result: Repeats each element in vector x, 2 times

a b c a b c
2 4 6 2 4 6

rep(x, each = 2, times = 2)

Result: Repeats each element twice in vector x, 2 times

a a b b c c a a b b c c
2 2 4 4 6 6 2 2 4 4 6 6

3.2. Vector Initialization

i. vector(mode = "logical", length = 3)

Result: FALSE FALSE FALSE

ii. vector(mode = "integer", length = 3)

Result: 0 0 0

iii. vector(mode = "double", length = 3)

Result: 0 0 0

iv. vector(mode = "character", length = 3)

Result: "" "" ""

3.3. Vector Arithmetic

R supports element-wise arithmetic operations on vectors. These include addition,
subtraction, multiplication, and division, which are performed on corresponding
elements of two vectors of the same length.

Example:
a = c(1, 2, 3)

b = c(4, 5, 6)

a + b # Result: 5 7 9

a - b # Result: -3 -3 -3

a * b # Result: 4 10 18

a / b # Result: 0.25 0.4 0.5

3



Stat 133, University of California, Berkeley Ajay Sharma

4. Implicit Coercion

4.1. Conceptul

Implicit coercion occurs when elements of different data types are combined within
the same vector. R will automatically convert (or coerce) all elements to a common
data type. The coercion follows a hierarchy, converting all elements to the most
flexible type to avoid loss of information.

Important

Hierarchy of Data Types: logical < integer < double < character

When coercion occurs:

• Logical values (TRUE, FALSE) are converted to integers (TRUE → 1, FALSE → 0).

• Integers are converted to doubles (numeric values with decimal points).

• Characters take precedence over all other types, meaning that if a character is
present in a vector, all elements will be coerced to characters.

Implicit coercion allows R to maintain uniform data types within vectors, but it can
sometimes lead to unintended results.

4.2. Example 3

Consider the following:

int = c(2L, 4L, 6L)

logi = c(TRUE, FALSE)

vec = c(FALSE, 1L) # Result: 0 1

Question

Given the output in example 3, is 0 a double or an integer?

Hint: Refer to section 4.1.

5. Atomic Vectors

Atomic vectors are the simplest data structures in R, storing elements of only a
single type. Common atomic vector types include logical, integer, double (numeric),
and character. R ensures that all elements within an atomic vector are of the same
data type, and if necessary, performs implicit coercion to enforce this.

4



Stat 133, University of California, Berkeley Ajay Sharma

5.1. Coercion in Atomic Vectors

Recall the hierarchy that R uses in section 4.1. Consider the example below:

mixed vec = c(TRUE, 2L, "apple")

Result: "TRUE" "2" "apple"

6. Explicit Coercion Functions

In R, explicit coercion functions are used when you need to manually convert ele-
ments from one data type to another. This is particularly useful when R’s implicit
coercion isn’t suitable for your needs, or when you need to enforce a specific data
type for a vector.

R provides several functions to explicitly coerce data types, such as:

• as.logical() – to convert values to logical (TRUE, FALSE).

• as.integer() – to convert values to integers.

• as.double() – to convert values to doubles (numeric).

• as.character() – to convert values to characters (strings).

Coercion is useful, but you need to be cautious, as converting between incompatible
types (e.g., trying to convert characters to numbers) may result in warnings or NA
values.

6.1. Examples

• as.logical(c(0, 1, 2))

Result: FALSE TRUE TRUE

• as.integer(c(1, 2.2, 3.33, 4.444))

Result: 1 2 3 4

• as.double(c("a", "b", TRUE, 133))

Result: Warning: NAs introduced by coercion: NA NA NA 133

5



Stat 133, University of California, Berkeley Ajay Sharma

7. Functions to Test Data Type

i. is.logical()

ii. is.integer()

iii. is.character()

iv. is.numeric()

Example:

is.logical(x) # False

is.logical(logi) # True

8. Vectorization

Vectorized code applies the same operation to each element. This is very efficient,
and should always be used when possible. It can be costly to loop through each
element in an array/vector.

sqrt(x) # Applies square root to every element in x

mean(x) # Computes the mean (not a vectorized function)

9. Recycling

In R, recycling occurs when you perform operations on vectors of different lengths. If one
vector is shorter than the other, R will recycle the elements of the shorter vector to match the
length of the longer vector. This means the shorter vector’s elements are reused repeatedly
until the operation is completed.

Important

R will only issue a warning if the length of the longer vector is not a multiple of the
length of the shorter vector. Otherwise, no warning will be raised.

Consider the case length(x) > length(y) and length(x) % length(y) = 0 :

x = c(2, 4, 6, 8)

y = c(2, 1)

x + y # Result: 4 5 8 9

6



Stat 133, University of California, Berkeley Ajay Sharma

9.2. Example with Warning

Consider the case length(u) > length(v) but length(u) % length(v) ̸= 0 :

u = c(2, 4, 6, 8, 10)

v = c(2, 1)

u + v # Result: 4 5 8 9 12

10. Subsetting (to be covered in lab)

7


