Stat 133, University of California, Berkeley Ajay Sharma

Iterations: For and While Loops

Stat 133, Fall 2024
Lectures 15 & 16, 10/10/2024

1. Introduction to Loops in R

Loops are fundamental structures in programming that allow repetitive execution of a block
of code. R supports two main types of loops:

e for loops
e while loops

Each loop type has its own strengths and is suitable for different use cases. In this document,
we will explore the syntax, usage, and examples for both for and while loops.

2. for Loops

A for loop iterates over a sequence, executing a block of code for each element in that
sequence. It’s useful when the number of iterations is known beforehand.

2.1. Syntax of for Loops

for (variable in sequence) {
code to execute on each iteration

}

Here, variable takes each value in sequence in turn, and the loop body is executed for
each value.

2.2. Example: Basic for Loop

for (i in 1:5) {
print (i)
}

Output:

(1] 1
[1] 2
[1] 3
[1] 4
[1] 5

Stat 133, University of California, Berkeley Ajay Sharma

2.3. Iterating Over Vectors

for loops can iterate over vectors or other data structures in R. For example:

numbers <- c(2, 4, 6, 8)
for (num in numbers) {
print (num~2)

}
Output:

[1] 4
[1] 16
[1] 36
[1] 64

2.4. Nested for Loops

for loops can be nested to perform repeated operations on multi-dimensional structures like
matrices.

matrix_data <- matrix(1:9, nrow = 3)
for (i in 1:nrow(matrix_data)) {
for (j in 1:ncol(matrix_data)) {
print (matrix_datali, j] * 2)
}

Stat 133, University of California, Berkeley Ajay Sharma

3. while Loops

A while loop continues to execute as long as a specified condition is TRUE. It is especially
useful when the number of iterations is not predetermined.

3.1. Syntax of while Loops

while (condition) {
code to execute as long as condition is TRUE

}

The loop will stop executing once condition evaluates to FALSE.

3.2. Example: Basic while Loop

count <- 1

while (count <= 5) {
print (count)
count <- count + 1

}
Output:

(1] 1
[1] 2
[1] 3
[1] 4
[1] 5

3.3. Avoiding Infinite Loops

A common pitfall in while loops is accidentally creating an infinite loop if the condition
never becomes FALSE. It’s crucial to ensure that there is a mechanism to break out of the
loop.

count <- 1

while (count <= 3) {
print (count)
Ensure condition changes to avoid infinite loop
count <- count + 1

Stat 133, University of California, Berkeley Ajay Sharma

4. Loop Control Statements

R provides additional control statements that allow fine-tuning the behavior within loops:
e break - immediately exits the loop

e next - skips the current iteration and proceeds to the next

4.1. Example: Using break

for (i in 1:10) {
if (i == 5) {
break
}
print (i)
}

Output:

(1] 1
[1] 2
[1] 3
[1] 4

4.2. Example: Using next

for (i in 1:5) {
if (1 == 3) {
next
}
print (i)
}

Output:

(1] 1
[1] 2
[1] 4
[1] 5

Stat 133, University of California, Berkeley Ajay Sharma

5. Loop Alternatives: apply Functions

In R, the apply family of functions provides alternatives to loops, allowing for vectorized
operations which are generally faster and more concise.

5.1. The lapply() Function

data <- list(a =1, b =2, c = 3)
result <- lapply(data, function(x) x"2)
print (result)

Output:

$a
(1] 1

$b
[1] 4

$c
(1] 9

6. Summary

Both for and while loops provide essential tools for repeated execution of blocks of code.
for loops are useful when the number of iterations is known, while while loops are suitable
for conditions that change dynamically. Loop control statements such as break and next
offer finer control over loop execution. Additionally, the apply function in R allows for
vectorized code which is often more efficient and provides alternatives to loops.

